

HN-003-016304

Seat No.

M. Sc. (Mathematics) (Sem. III) (CBCS) Examination May / June - 2017

MATH.CMT - 3004: Discrete Mathematics

Faculty Code: 003 Subject Code: 016304

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70

Instructions: (1) Answer all the questions.

(2) Each question carries 14 marks.

1 Answer any Seven:

 $7 \times 2 = 14$

- (a) Verify that $00^*(0 \lor 1)^*1$ is a regular expression over $\{0.1\}$.
- (b) Let A be a $m \times n$ Boolean matrix and B be a $n \times p$ Boolean matrix. Define the *Boolean product* of A and B.
- (c) Let R be the relation defined on $\mathbb{Z} \times \mathbb{Z}$ by (a, b)R(x, y) if and only if a b = x y. Prove that R is an *eguivalence* relation on $\mathbb{Z} \times \mathbb{Z}$.
- (d) If (P, \leq) is a partially ordered set, then prove that (P, \leq^{-1}) is a partially ordered set.
- (e) Define a modular lattice and illustrate it with an example.
- (f) Define a *Boolean Algebra* Let $n \ge 1$. Show that there exists a Boolean Algebra containing exactly 2^n elements.
- (g) Define homomorphism of semigroups. Let $(S.*) \rightarrow (T.*')$ be a surjective homomorphism of semigroups. If (S.*) is a monoid, then show that (T.*') is also a monoid.
- (h) Let $I = \{a,b\}$ and $L \subseteq I^*$, When is L said to be a *type three language*?
- (i) Define a machine congruence on a finite state machine.
- (j) Define the *direct derivability* relation associated with a phrase structure grammar *G*.

2 Answer any Two:

 $2 \times 7 = 14$

5

5

- (a) Let H be a normal subgroup of a group G. Define the relation R on G by aRb if and only if $ab^{-1} \in H$. Prove that R is a congruence relation on G.
- (b) State and prove the fundamental theorem of homomorphism of semi-groups.
- (c) Let $n \ge 1$. Show that D_n the lattice of positive divisors of n is distributive.
- **3** (a) Let A be a finite nonempty set. Define the concept of regular expression ouer A.
 - (b) Let (L_i, \leq_i) be lattices for each $i \in \{1,n\}$, Let $L = L_1 \times \times L_n$. Prove that (L, \leq) is a lattice, where \leq is the product partial order on L.
 - (c) Let p,q be propositions. Construct a truth table for the statement $(p \wedge q) \vee \tilde{p}$. is the negation of P.

OR

- 3 (a) Let R be a relation defined on a nonempty set A. 5 Prove that R^{∞} is the transitive closure of R.
 - (b) Let $f: L_1 \to L_2$ be a bijection, where (L_i, \leq_i) is a lattice for each $i \in \{1, 2\}$. Show that $f(a \lor b) f(a) \lor f(b)$ for all $a, b \in L_1$ if and only if f and f^{-1} both preserve order.
 - (c) Construct the truth table for the Boolean function $f: B_3 \to B$ determined by the Boolean polynomial $p(x_1.x_2.x_3) = (x_1 \land x_2) \lor (x_1 \lor (x_2' \land x_3)).$

4 Answer any Two:

2×7=14

- (a) Let (L, \leq) be a finite Boolean Algebra. Let $a \in L, a \neq 0$. Let $W = \{b \in L : b \text{ is an atom of } (L, \leq) \text{ with } b \leq a\}$. Prove that $a = v_{b \in W}b$.
- (b) State and prove the Pumping lemma.

(c) Let M be a Moore machine with $S = \{s_0, s_1.s_2\}, I = \{a,b\}. f_a: S \to S$ equals the identity mapping on $S.f_b(s_0) = s_1, f_b(s_1) = s_2.f_b(s_2) = s_2$ and $T = \{s_2\}.$ Find L(M) and also determine a regular expression α over I such that L(M) is the regular set corresponding to α .

5 Answer any Two:

 $2 \times 7 = 14$

- (a) Let M be a Moore machine with S as its state set. Prove that the w-compatibility relation R defined on S is a machine congruence on M and L(M) = L(M/R).
- (b) Let $n \ge 1$ Prove that any function $f: B_n \to B$ is produced by a Boolean expression.
- (c) Let $(L. \le)$ be a lattice. Show that $(L. \le)$ is distributive if and only if for all $a,b,c \in L, (a \land b) \lor (b \land c) \lor (c \land a) = (a \lor b) \land (b \lor c) \land (c \lor a).$
- (d) Let M be a Moore machine with I as its input set. Show that there exists a type three phrase structure grammar G with I as its set of terminal symbols such that L(M) = L(G).